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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ 

В связи с повышением требований к качеству полупроводниковых мате-

риалов и приборов на их основе, а также интенсивным развитием нанотехноло-

гий и новых материалов, выявились серьезные ограничения традиционных ме-

тодов получения полупроводников, связанные, прежде всего, с неоднородно-

стью свойств материала, вызванной неравномерным распределением легирую-

щих примесей и генетических дефектов по объему кристалла. 

В последнее время, в связи с новыми, более жесткими требованиями к  

чистоте технологических операций, а также в силу необходимости развития ме-

тодов локального управления свойствами полупроводников и повышения ста-

бильности устройств в условиях внешних воздействий, интерес к радиацион-

ным методам в технологии получения материалов и приборов резко возрос. 

Впервые способ ядерного легирования полупроводников облучением тепловы-

ми нейтронами был показан в 60-е годы рядом зарубежных фирм. В России 

практическую реализацию технология ядерного легирования кремния получила 

около 40 лет тому назад на базе реактора ВВР-ц филиала ФГУП “НИФХИ им. 

Л.Я. Карпова”. Впоследствии технология была внедрена на ряде исследователь-

ских и промышленных ядерных реакторов (Томск, Киев, Минск, ЛАЭС, ЧАЭС, 

САЭС и др.). Современный метод ядерного легирования полупроводниковых 

материалов позволяет получить монокристаллы с неоднородностью свойств по 

объему менее 5%.  

В отличие от кремния, технология ядерного легирования полупроводни-

ковых соединений АIIIВV и, в частности, арсенида галлия, впервые получила 

практическую реализацию в нашей стране на базе реактора ВВР-ц филиала 

ФГУП “НИФХИ им. Л.Я. Карпова”. Технология доведена до выпуска опытных 

партий материала. 

Развитие этой технологии для других соединений АIIIВV, в частности, для 

In-содержащих, требует решения ряда специфических задач, связанных с уст-
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ранением комплекса радиационных дефектов (РД), возникающих в материале 

при облучении, их трансформации при последующих термообработках, выяс-

нением характера их влияния на свойства материала, а также ряда технологиче-

ских задач, таких как обеспечение однородности нейтронного потока в мате-

риале и эффективного охлаждения образцов в процессе облучения. 

Актуальность работы определяется, прежде всего, отсутствием закон-

ченных представлений о механизмах образования и отжига радиационных де-

фектов в In-содержащих полупроводниковых соединениях AIIIBV, характере 

взаимодействия радиационных дефектов между собой, с исходными структур-

ными дефектами и вводимой легирующей примесью, как в процессе облучения, 

так и при последующих термообработках, характере влияния условий облуче-

ния и параметров исходного материала на конечные свойства ядерно-

легированных полупроводников. Выяснение и развитие этих представлений по-

служат основой для разработки перспективной технологии ядерного легирова-

ния, которая позволит получить высококачественные однородно-легированные 

монокристаллические пластины InSb, InP и InAs. 

Цель работы – установление закономерностей протекания радиационно-

физических процессов в монокристаллах InSb, InP и InAs после облучения ре-

акторными нейтронами и последующей термообработки, определение опти-

мальных режимов облучения и термообработки, являющихся физическими ос-

новами для разработки технологии ядерного легирования данных материалов. 

Для достижения указанной цели необходимо было решить следующие 

основные задачи: 

– разработать методику расчета количества смещенных атомов в InSb, InP 

и InAs при облучении в исследовательском ядерном реакторе с учетом вклада 

различных составляющих реакторного излучения (нейтроны, гамма-кванты, 

атомы отдачи); 

– разработать методику определения концентрации и эффективности вве-
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дения легирующей примеси олова в InSb, InP и InAs и сравнить результаты хи-

мико-спектрального анализа с расчетными данными; 

– исследовать изменение электрофизических и структурных характери-

стик образцов InSb, InP и InAs с различной исходной концентрацией носителей 

заряда при облучении как преимущественно быстрыми нейтронами так и пол-

ным спектром реакторных нейронов, а также в процессе последующих термо-

обработок; 

– определить раздельный вклад в дефектообразование различных состав-

ляющих нейтронного спектра реактора в исследуемых материалах; 

– выяснить механизмы образования и отжига радиационных дефектов в 

образцах при облучении нейтронами и последующих термообработках; 

– определить оптимальные температуры отжига радиационных дефектов 

в облученных нейтронами монокристаллах InSb, InP и InAs; 

– получить эмпирические формулы для определения суммарной концен-

трации вводимых в результате ядерного легирования электрически-активных 

донорных примесей в зависимости от флюенса тепловых нейтронов; 

– выпустить опытные образцы ядерно-легированных монокристалличе-

ских пластин InSb, InP и InAs и провести сравнительный анализ их свойств со 

свойствами материалов, легированных металлургическим способом в процессе 

выращивания. 

Научная новизна: 

– с учетом вклада всех образующихся изотопов, в зависимости от флюен-

са тепловых нейтронов разработана методика и проведен расчет значения кон-

центрации вводимых в результате ядерного легирования донорных примесей 

(Nд): для InSb – Nд = 2,925·ФТ; для InP – Nд = 3,839·ФТ; для InAs – Nд = 3,687·ФТ; 

– экспериментально доказана возможность введения легирующей приме-

си Sn в широком диапазоне концентраций: для InSb – 1014÷2⋅1018 см-3; для InP – 

5⋅1016÷7⋅1019 см-3; для InAs – 2⋅1017÷7⋅1019 см-3; обнаружено хорошее совпадение 
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расчетных значений концентрации вводимой примеси с результатами химико-

спектрального анализа и линейная зависимость концентрации Sn от флюенса 

тепловых нейтронов; 

– впервые обнаружено аномальное поведение периода решетки InP с уве-

личением флюенса нейтронов; в отличие от других полупроводниковых соеди-

нений AIIIBV, в которых с ростом флюенса нейтронов происходит увеличение 

периода решетки, в кристаллах InP при облучении нейтронами период решетки 

уменьшается; высказано предположение, что образуется такое сочетание де-

фектов, в котором преобладает действие дефектов вакансионного типа, умень-

шающих период решетки, а также антиструктурных дефектов PIn; 

– экспериментально определено предельное значение концентрации элек-

тронов проводимости в сильнооблученном InAs; с ростом флюенса нейтронов, 

независимо от исходного уровня легирования, значение концентрации электро-

нов стремится к ~ 3·1018 см-3; 

– на основании исследования электрофизических и структурных характе-

ристик выявлены следующие стадии отжига РД в облученных нейтронами ре-

актора материалах: для InSb – (100÷250) оС, (250÷400) оС; для InP – (100÷300) 
оС, (300÷600) оС, (700÷900) оС; для InAs – (100÷300) оС, (300÷600) оС, (600÷900) 
оС; определены оптимальные температуры отжига: для InSb – (450÷480) оС; для 

InP – (850÷900) оС; для InAs – порядка 900 оС; 

– экспериментально показано, что вплоть до значений концентрации оло-

ва: 2⋅1018 см-3 – для InSb, 2⋅1019 см-3 – для InP и 7⋅1019 см-3 – для InAs, практиче-

ски вся вводимая примесь после отжига находится в электрически активном со-

стоянии; необходимо отметить, что достигаемый уровень легирования InSb 

оловом существенно превосходит максимальную концентрацию Sn ((3÷5)⋅1017 

см-3), достигаемую при традиционном легировании в процессе выращивания, 

что свидетельствует о преимуществе метода ядерного легирования; 

– проведен анализ экспериментальных результатов зависимости концен-
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трации носителей заряда (nЯЛ) в ядерно-легированных InSb, InP, InAs от флюен-

са тепловых нейтронов; получена эмпирическая формула: nЯЛ ≈ 2,1·ФТ; впервые 

для реактора ВВР-ц определен раздельный вклад нейтронов различных энергий 

в процесс ядерного легирования InSb, InP и InAs; показано, что отсечение теп-

ловых нейтронов (облучение в Cd-пеналах) не приводит к полному устранению 

эффекта ядерного легирования; вклад (δ) промежуточных нейтронов в общий 

уровень ядерного легирования InSb, InP и InAs при облучении полным спек-

тром нейтронов реактора в зависимости от соотношения тепловых и быстрых 

нейтронов в потоке (k); для реактора типа ВВР δ ≈ 0,1/k, и для реактора ВВР-ц 

достигает порядка 5% в периферийных каналах и 10% в каналах активной зоны. 

Практическая ценность: 

– экспериментально определены условия облучения (плотность потока 

нейтронов, соотношение плотностей потоков тепловых и быстрых нейтронов, 

среда, температура), режимы последующих термообработок (температура, сре-

да, скорости нагрева и охлаждения) и требования к исходному материалу (кон-

центрация носителей заряда) для разработки технологии ядерного легирования 

InSb, InP и InAs; 

– экспериментально определены предельные значения концентрации вво-

димой примеси Sn в InSb, InP и InAs методом ядерного легирования, которые в 

несколько раз превышают концентрации Sn, вводимые в материалы в процессе 

выращивания; 

– полученные в работе экспериментальные результаты имеют практиче-

ское значение для прогнозирования свойств материалов и приборов при экс-

плуатации в условиях повышенной радиации и могут быть использованы как 

физические основы для дальнейшей разработки технологии ядерного легирова-

ния и радиационного модифицирования In-содержащих полупроводниковых 

соединений АIIIВV на базе действующих исследовательских и промышленных 

ядерных реакторов. 
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Основные положения, выносимые на защиту: 

– закономерности изменения электрофизических и структурных характе-

ристик облученных в реакторе ВВР-ц монокристаллов InSb, InP и InAs в широ-

ком диапазоне флюенсов тепловых (до 3,5⋅1019 см-2) и быстрых (до 4,6⋅1019 см-2) 

нейтронов до и после термообработки; аномальное поведение периода решетки 

в облученных образцах InP – уменьшение с ростом флюенса нейтронов; 

 – стадии отжига радиационных дефектов: для InSb – (100÷250) оС, 

(250÷400) оС; для InP – (100÷300) оС, (300÷600) оС, (700÷900) оС; для InAs – 

(100÷300) оС, (300÷600) оС, (600÷900) оС, и оптимальные температуры отжига 

облученных нейтронами образцов: для InSb – (450÷480) оС; для InP – (850÷900) 
оС; для InAs – порядка 900 оС; 

– предельные значения концентрации вводимых атомов олова в монокри-

сталлы InSb, InP и InAs за счет ядерных реакций на тепловых и промежуточных 

нейтронах: 2⋅1018 см-3 – для InSb, 2⋅1019 см-3 – для InP, 7⋅1019 см-3 – для InAs; 

– впервые полученные экспериментальные данные по вкладу (δ) проме-

жуточных нейтронов в общий уровень ядерного легирования InSb, InP и InAs 

при облучении полным спектром нейтронов реактора в зависимости от соотно-

шения тепловых и быстрых нейтронов в потоке (k); для реактора типа ВВР δ ≈ 

0,1/k.  

Апробация работы

Основные результаты, представленные в диссертации, доложены на сле-

дующих научных конференциях и семинарах: Российская научная конференция 

“Радиационная стойкость электронных систем”, “Стойкость – 2004”, Москва, 

МИФИ, 2004 г.; 8-ой международный симпозиум “Технологии микроэлектро-

ники и микросистем”, Львов, 14-16 октября, 2004 г.; Международная конфе-

ренция Физико-химические процессы в неорганических материалах (ФХП-9), 

Кемерово, 22-25 сентября 2004 г.; IV Международная научная конференция 
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“Радиационно-термические эффекты и процессы в неорганических материа-

лах”, Томск, 12-19 августа 2004 г.; XI Национальная конференция по росту кри-

сталлов “НКРК-2004”, Москва, 14-17 декабря 2004 г.; Шестой Международный 

Уральский Семинар “Радиационная физика металлов и сплавов”, Снежинск, 20-

26 февраля 2005г.; VIII Межгосударственный семинар “Структурные основы 

модификации материалов нетрадиционными методами”, Обнинск, ИАТЭ, 14-18 

июня 2005 г.; V Национальная конференция по применению Рентгеновского, 

Синхротронного излучений, Нейтронов и Электронов для исследования нано-

материалов и наносистем “РСНЭ НАНО-2005”, Москва, ИК РАН, 14-19 ноября, 

2005 г.; Девятая конференция “Арсенид галлия и полупроводниковые соедине-

ния группы III-V” (GaAs-2006), Томск, 3-5 октября 2006 г.; Третья Междуна-

родная конференция по физике кристаллов “Кристаллофизика 21-го века”, Мо-

сква, МИСиС, 20-26 ноября 2006 г.; Седьмой Международный Уральский Се-

минар “Радиационная физика металлов и сплавов”, Снежинск, 25 февраля – 3 

марта 2007г. 

Публикации 

По теме диссертации опубликовано 22 печатные работы, в том числе 8 

статей в реферируемых российских и зарубежных научных журналах, тезисы 14 

докладов на российских и международных конференциях, поданы 5 заявок на 

получение патента РФ.  

Структура и объем диссертации

Диссертация состоит из введения, 6 глав, заключения, списка используе-

мой литературы. Работа изложена на 106 страницах машинописного текста, со-

держит 44 рисунка и 17 таблиц. Список используемой литературы включает 

195 наименований. 
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ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 

В главе 1 проанализированы имеющиеся литературные данные по радиа-

ционно-физическим процессам, происходящим в InSb, InP и InAs при облуче-

нии различными видами ионизирующих излучений (гамма-кванты и электроны, 

протоны, тяжелые ионы, нейтроны), а также представлен литературный обзор 

по технологии ядерного легирования полупроводников. 

Полученные результаты исследования влияния различных видов ионизи-

рующих излучений на удельное электросопротивление, коэффициент Холла, 

подвижность носителей заряда, оптическое поглощение, магнетосопротивле-

ние, фотолюминесценцию и др. свойства InSb, InP и InAs позволили выделить 

несколько стадий отжига радиационных дефектов, образующихся при различ-

ных режимах облучения, в том числе – при разных температурах. Показано, что 

при облучении быстрыми реакторными нейтронами основными радиационны-

ми дефектами, ответственными за изменение свойств материала, являются ра-

зупорядоченные области. 

Возможность легирования InSb донорной примесью при облучении теп-

ловыми нейтронами ядерного реактора была доказана еще в 60-е годы. Ввиду 

большого сечения поглощения тепловых нейтронов атомами In антимонид ин-

дия легируется в основном атомами Sn. Показано, что вводимые РД можно уст-

ранить отжигом облученных образцов в диапазоне 350÷400 оС. 

Работ, посвященных облучению быстрыми реакторными нейтронами, а 

также ядерному легированию фосфида индия, значительно меньше. В литера-

туре показано, что облучение InP нейтронами приводит к возникновению де-

фектов, играющих роль ловушек для обоих типов носителей. Облучение боль-

шими флюенсами нейтронов создает материал n-типа с удельным электриче-

ским сопротивлением ρ ∼ 103 Ом⋅см. Предельное положение уровня Ферми в 

сильно облученных образцах находится в верхней половине запрещенной зоны 

(Flim = ЕС – 0,3 эВ). Данные по позитронной аннигиляции показывают, что при 
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отжиге облученных образцов в них образуются вторичные вакансионные де-

фекты в результате агрегации точечных вакансий. Большинство электрически 

активных и позитронно-чувствительных дефектов в облученных образцах InP 

устраняются после отжига при температуре порядка 700 оС. 

В литературе показано, что при облучении InAs быстрыми нейтронами 

концентрация носителей заряда в n-InAs возрастает и стремится к насыщению с 

ростом флюенса, а р-InAs испытывает конверсию проводимости.  

Приведен анализ состояния дел в стране и в мире по ядерному легирова-

нию полупроводников – Si и GaAs. Показаны основные преимущества и недос-

татки метода. Рассмотрены основные задачи применительно к полупроводни-

ковым соединениям AIIIBV. 

Несмотря на наличие довольно большого числа работ по облучению InSb, 

InP и InAs, закономерности изменения электрофизических и структурных ха-

рактеристик, происходящие в данных материалах на разных технологических 

этапах ядерного легирования, не изучены в достаточной степени, что и послу-

жило основой для постановки данной работы. Была поставлена задача изучения 

влияния условий облучения и режимов последующих термообработок на ха-

рактер изменения электрофизических и структурных характеристик монокри-

сталлов InSb, InP и InAs, что необходимо для разработки технологии ядерного 

легирования данных материалов. 

В главе 2 приведена разработанная методика количественного расчета 

числа смещенных атомов, образующихся в антимониде, фосфиде и арсениде 

индия в результате облучения в исследовательском реакторе ВВР-ц. Учитывал-

ся вклад быстрых и тепловых нейтронов, гамма-излучения и атомов отдачи. Так 

как свойства материалов изучались после длительной выдержки образцов для 

спада наведенной радиоактивности, то все неравновесные ионизационные про-

цессы, происходящие в материалах при облучении, не рассматривались. Для 

расчета количества образовавшихся пар Френкеля при облучении быстрыми 
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нейтронами использовалась модель Линдхарда. В расчете средняя энергия бы-

стрых нейтронов принималась равной 2 МэВ, как это принято для реакторов 

типа ВВР. Вклад тепловых нейтронов в дефектообразование заключается в об-

разовании атомов отдачи в первичных (n,γ)-реакциях и при β- и γ-распаде ра-

диоактивных изотопов. Реакции типа (n,n'), (n,2n), (n,p), (n,α) и т.п. в расчете не 

учитывались, так как они являются пороговыми и в элементах исследуемых ма-

териалов имеют место начиная с 14 МэВ. Доля таких нейтронов в спектре реак-

тора ВВР-ц практически несущественна. Определены расчетные значения кон-

центрации вводимых в результате ядерного легирования донорных примесей, с 

учетом вклада всех образующихся изотопов, в зависимости от флюенса тепло-

вых нейтронов: для InSb – Nд = 2,925·ФТ;   для InP – Nд = 3,839·ФТ;  для InAs – 

Nд = 3,687·ФТ. 

Из-за большого сечения поглощения атомами индия тепловых нейтронов 

(≈190 барн) основной легирующей примесью является олово. Количество обра-

зующихся других изотопов незначительно: для InSb – Sn114 (0,25%), Cd114 

(0,01%), Sn116 (97,15%), Te122 (1,65%), Sn122 (0,05%), Te124 (0,89%); для InP – S32 

(0,18%), Sn114 (0,26%), Cd114 (0,01%), Sn116 (99,55%); для InAs – Se76 (5,27%), 

Sn114 (0,24%), Cd114 (0,01%), Sn116 (94,48%). 

Число смещенных атомов, образующихся при действии гамма-излучения 

реактора, рассчитывалось по теории Кейна. Использовались полученные ранее 

данные калориметрических измерений поглощенной дозы в различных мате-

риалах, после компьютерной обработки которых были рассчитаны энергетиче-

ские спектры γ-излучения внутри каналов реактора ВВР-ц и спектры вторичных 

электронов для исследуемых материалов. 

Показано, что основной вклад в дефектообразование вносят быстрые ней-

троны – порядка 85÷95% в зависимости от условий облучения (каналы актив-

ной зоны или периферийные каналы). Сделан расчет полного числа смещенных 

атомов с учетом всех указанных составляющих в исследуемых материалах при 
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облучении в различных каналах реактора ВВР-ц. Суммарное количество сме-

щенных атомов, возникающих в InSb, InP и InAs, в зависимости от флюенса 

быстрых нейтронов, равно: InSb в канале а.з. – Nd ≈ 269·ФБ; InSb в пер. канале – 

Nd ≈ 312·ФБ; InP в канале а.з. – Nd ≈ 504·ФБ; InP в пер. канале – Nd ≈ 572·ФБ; InAs 

в канале а.з. –  Nd ≈ 537·ФБ; InAs в пер. канале – Nd ≈ 590·ФБ. 

В главе 3 приведены экспериментальные результаты исследования элек-

трофизических и структурных характеристик InSb с различной исходной кон-

центрацией носителей заряда от флюенса быстрых и тепловых нейтронов и ре-

жимов последующих термообработок. 

Электрофизические параметры полупроводниковых материалов (n, μ, ρ) 

измерялись методом Ван-дер-Пау на автоматизированной установке южноко-

рейского производства «HMS-3000» при комнатной температуре (300 К) для 

образцов InP, InAs, и температуре жидкого азота (77 К) для образцов InSb. Хи-

мико-спектральный анализ проводился с чувствительностью 10-5÷10-6 %. 

Измерения структурных параметров материалов проводились в Москов-

ском институте стали и сплавов (Технологический университет). Прецизионное 

измерение периода решетки с погрешностью ± 1·10-6 нм проводилось методом 

Бонда. Использовалось CuKα1 излучение (λ=0,15405934±0,00000082 нм). Для 

изучения микродефектов (МД) использовался метод диффузного рассеяния 

рентгеновских лучей (ДРРЛ). Интенсивность ДРРЛ измерялась с помощью 

трехкристального рентгеновского дифрактометра в схеме (n; -n; n). 

Показано, что при облучении антимонида индия как полным спектром, 

так и преимущественно быстрыми нейтронами реактора, с ростом флюенса  

концентрация носителей заряда монотонно возрастает, а подвижность носите-

лей падает (рис. 1). Исходный р-InSb при флюенсе быстрых нейтронов порядка 

5·1016 см-2 испытывает р→n конверсию проводимости и при дальнейшем уве-

личении флюенса ведет себя как материал n-типа. 
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Рис. 1. Зависимость концентрации (затемненные символы) и подвижно-

сти носителей заряда от флюенса быстрых нейтронов для образцов InSb, n0 ⋅10-

13 см-3: ! – 31; , – 8,7; 7 – 40; Β – р0 = 5,2; Λ – р0 = 5,8. Сплошные линии – после об-

лучения, пунктирные линии – после облучения и термообработки (Т = 450 оС, 

20 мин.). На осях указаны исходные значения. Для сравнения приведена зави-

симость концентрации носителей заряда от флюенса тепловых нейтронов – ξ 

 

На зависимости периода решетки от флюенса быстрых нейтронов можно 

выделить два участка. При малых фюенсах (ФБ < 2,5·1017 см-2) увеличение пе-

риода решетки не наблюдается, а при ФБ > 2,5·1017 см-2 период решетки резко 

возрастает. 

Из анализа ДРРЛ предположено, что при малых флюенсах происхо-

дят диссоциация вакансионных кластеров и рост числа мелких кластеров межу-

зельного типа, и на фоне этих структурных изменений наблюдается ускоренная 

аннигиляция дефектов противоположного типа (вакансионных и межузельных). 

При больших флюенсах, когда возрастает вероятность перекрытия разупорядо-

ченных областей и происходит накопление РД, образуется сильное пересыще-

ние ими и образование множества мелких вакансионных и межузельных кла-

стеров. Картина диффузного рассеяния в ядерно-легированных образцах каче-
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ственно подтверждает закономерность изменения структуры МД при облуче-

нии преимущественно быстрыми нейтронами. 

При термообработке InSb, облученного преимущественно быстрыми ней-

тронами реактора, отжиг радиационных дефектов наиболее интенсивно проис-

ходит в интервале температур 100÷450 оС. Выявлены две стадии отжига РД: I – 

100÷250 оС; II – 250÷400 оС. Термообработка ядерно-легированного InSb не 

приводит к значительному изменению электрофизических параметров. То есть 

основная часть введенной примеси Sn находится в материале в электрически 

активном состоянии сразу после облучения. 

Период решетки после термообработки облученных образцов до 400 оС 

практически достигает значения у необлученного материала. Наиболее резкое 

восстановление периода решетки происходит при температуре более 200 оС, 

что соответствует II-ой стадии отжига РД по электрофизическим параметрам. 

Изменение ДРРЛ при практической неизменности периода решетки позволяет 

предположить, что при относительно низких (до 200 оС) температурах идет су-

щественное перераспределение РД. Однако практически их аннигиляция начи-

нается при 300 оС. Дефекты, образующиеся при облучении полным спектром 

реакторных нейтронов, отличаются от дефектов, формирующихся при облуче-

нии преимущественно быстрыми нейтронами. 

Оптимальная температура отжига ядерно-легированного и облученного 

преимущественно быстрыми нейтронами реактора InSb равна 450 оС. 

На основе анализа экспериментальных результатов предложена эмпири-

ческая формула зависимости концентрации электрически активной примеси Sn 

в облученных и отожженных при 450 оС образцах InSb от флюенса быстрых 

нейтронов: n(Cd) ≈ 0,2·ФБ. Эмпирическая формула зависимости концентрации 

электрически активной примеси Sn, в образцах InSb, облученных полным спек-

тром реакторных нейтронов и отожженных при 450 оС от флюенса тепловых 

нейтронов, имеет вид: nЯЛ ≈ 2,1·ФТ. 
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При облучении полным спектром реакторных нейтронов вклад промежу-

точных нейтронов в общий уровень ядерного легирования зависит от соотно-

шения плотностей потоков тепловых и быстрых нейтронов и для реактора ВВР-

ц достигает порядка 5% в периферийных каналах и 10% в каналах активной зо-

ны. 

В главе 4 приведены экспериментальные результаты исследования элек-

трофизических и структурных характеристик монокристаллов InP с различной 

исходной концентрацией носителей заряда от флюенса быстрых и тепловых 

нейтронов, и режимов последующих термообработок. 

Показано, что при облучении фосфида индия как полным спектром, так и 

преимущественно быстрыми нейтронами реактора, с ростом флюенса концен-

трация и подвижность носителей заряда уменьшаются в результате образования 

РД. При этом, чем выше уровень легирования исходного материала, тем при 

больших флюенсах нейтронов начинается уменьшение концентрации носите-

лей заряда. 

Впервые обнаружено аномальное поведение периода решетки InP с рос-

том флюенса нейтронов. В отличие от других полупроводниковых соединений 

AIIIBV, в которых с ростом флюенса нейтронов происходит увеличение периода 

решетки, в кристаллах InP при облучении как быстрыми, так и тепловыми ней-

тронами период решетки уменьшается (рис. 2). Причем, чем больше концен-

трация легирующей примеси в исходном материале, тем больше падает период 

решетки с ростом флюенса нейтронов. Высказано предположение, что образу-

ется такое сочетание дефектов, в котором преобладает действие вакансионных 

дефектов, уменьшающих период решетки, а также антиструктурных дефектов 

PIn. 

Выявлены три стадии отжига РД: I – 100÷300 оС; II – 300÷600 оС; III – 

700÷900 оС. Отжиг радиационных дефектов наиболее интенсивно происходит в 

интервале температур 300÷600 оС. 
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Рис. 2. Зависимость периода решетки от флюенса быстрых нейтронов об-

разцов InP с различным исходным содержанием примеси, n0⋅10-17 см-3: 1 – 20,0 

(Sn); 2 – 0,35 (Te); 3 – 0,35 (Te); 4 – 2 (Te); 5 – 8 (Te); 6 – 0,47 (Te); 7 – 39,0 (Te) 

 

Наиболее резкое восстановление периода решетки происходит в интерва-

ле температур 200÷500 оС, что соответствует первым двум стадиям отжига, вы-

явленным при исследовании электрофизических свойств. Термообработка до 

600 оС образцов, облученных быстрыми нейтронами, приводит к восстановле-

нию периода решетки. В слаболегированных образцах, облученных полным 

спектром, период решетки становится больше исходного, а в сильнолегирован-

ном образце – не восстанавливается до исходного значения. 

Характер изменения периода решетки и ДРРЛ позволили разработать мо-

дель отжига РД. Антиструктурный дефект PIn, судя по периоду решетки, прак-

тически отжигается к 500 оС. При температуре отжига 200 оС в материале при-

сутствуют крупные и мелкие МД как вакансионного, так и межузельного типов. 

С увеличением температуры отжига до 300 оС количество МД уменьшается, 

причем размер крупных МД практически не изменяется. При температуре от-

жига 500 оС возрастает число крупных МД, однако мелкие вакансионные МД 



 

растворяются. То есть образуются дефекты с температурой отжига выше 500 
оС. 

Оптимальной температурой отжига ядерно-легированного и облученного 

быстрыми нейтронами реактора InР является температура порядка 850÷900 оС. 

Показано, что в ядерно-легированном InP эффект политропии наблюдает-

ся при более высоких концентрациях примеси (~ 2,9·1018 см-3), чем в InP, леги-

рованном металлургическим способом в процессе выращивания (∼5·1017 см-3), 

что является одним из преимуществ метода ядерного легирования. 

В главе 5 приведены экспериментальные результаты исследования элек-

трофизических и структурных характеристик InAs с различной исходной кон-

центрацией носителей заряда от флюенса быстрых и тепловых нейтронов и ре-

жимов последующих термообработок. 

Экспериментально показано, что с ростом флюенса быстрых нейтронов 

(ФБ) при n0 ≤ (2÷3)·1018 см-3 (а также в материале р-типа) концентрация элек-

тронов проводимости в InAs увеличивается, а при исходной концентрации n0> 

(3÷4)·1018 см-3  – уменьшается. Предельный уровень концентрации электронов, 

достигаемый при флюенсах нейтронов ФБ ≥ 1019 см-2, не зависит от исходного 

уровня легирования материала и составляет ~ 3·1018 см-3. 

С ростом флюенса полного спектра реакторных нейтронов период ре-

шетки арсенида индия линейно возрастает. 

Отжиг радиационных дефектов, сопровождаемый соответствующим из-

менением концентрации и подвижности носителей заряда, наиболее интенсив-

но происходит в интервале температур 300÷600 оС. Выявлены три стадии от-

жига РД: I – 100÷300 оС; II – 300÷600 оС; III – 600÷900 оС. Дефекты, ответст-

венные за изменение периода решетки арсенида индия после облучения реак-

торными нейтронами, отжигаются практически полностью при температуре 

500÷600 оС. 

Оптимальная температура отжига ядерно-легированного и облученного 
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быстрыми нейтронами арсенида индия составляет порядка 900 оС. В кристал-

лах, отожженных при 900 оС, концентрация электронов практически совпадает 

с концентрацией олова, введенного в результате ядерных превращений. 

Глава 6 посвящена технологическим аспектам метода ядерного легиро-

вания образцов InSb, InP и InAs облучением нейтронами реактора. Дано крат-

кое описание основных характеристик исследовательского ядерного реактора 

ВВР-ц, в котором облучались образцы нейтронами различного спектрального 

состава. Энергетический спектр нейтронов в реакторах с водяным охлаждени-

ем, к которым относится реактор ВВР-ц, описывается максвеловским распреде-

лением. Размер активной зоны реактора составляет 60×60 см2. Замедлителем и 

теплоносителем служит вода двойной дистилляции. Все конструкционные де-

тали внутри реактора выполнены из алюминиевого сплава САВ. Номинальная 

мощность реактора 10 МВт. Реактор ВВР-ц оснащен несколькими десятками 

вертикальных каналов диаметром от 40 до 120 мм на различном удалении от 

центра активной зоны, имеющих воздушное и водяное охлаждение. Облучение 

образцов проводилось в вертикальных каналах активной зоны реактора (каналы 

1-1 и 8-9) и на периферии в отражателе реактора (каналы 9 и 29 – 96 см от цен-

тра активной зоны).  

Химическая обработка образцов проводилась в свежих травителях соста-

ва: для InSb – HF:HNO3 = 1:1 в течение 10÷30 с; для InP – H2O:HNO3:HCl = 6:3:1 

в течение 3÷5 мин (кипящий травитель); для InAs – HNO3:HF:H2O = 3:1:2 в те-

чение 15÷30 с. 

При температуре отжига InP свыше 500 оС ампулы предварительно отка-

чивались до вакуума ∼10-3 мм рт.ст. и после запаивания передавались на отжиг. 

Отжиг InAs свыше 500 оС проводился в ампулах при равновесном давлении па-

ров As над InAs. 

Приведены основные требования, предъявляемые к исходному материалу 

для ядерного легирования, режимы отжига и технологические параметры пе-
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чей, используемых для термообработки облученных монокристаллов.  

Детально описаны основные технологические операции, включающие: 

подготовку образцов к облучению, упаковку и загрузку образцов в облучатель-

ское устройство, облучение, дезактивацию облученных образцов, механиче-

скую и химическую обработки, отжиг, измерение электрофизических парамет-

ров. 

 

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ 

1. Разработана методика и проведен расчет значения концентрации вво-

димых в результате ядерного легирования донорных примесей, с учетом вклада 

всех образующихся изотопов,  в  зависимости  от флюенса тепловых нейтронов: 

для InSb – Nд = 2,925·ФТ; для InP – Nд = 3,839·ФТ; для InAs – Nд = 3,687·ФТ. 

2. Экспериментально доказана возможность введения легирующей при-

меси Sn в широком диапазоне концентраций: для InSb – 1014÷2⋅1018 см-3; для InP 

– 5⋅1016÷7⋅1019 см-3; для InAs – 2⋅1017÷7⋅1019 см-3; обнаружено хорошее совпаде-

ние расчетных значений концентрации вводимой примеси с результатами хи-

мико-спектрального анализа и линейная зависимость концентрации Sn от флю-

енса тепловых нейтронов.  

3. Изучены зависимости электрофизических и структурных свойств InSb, 

InP, InAs с различной исходной концентрацией носителей заряда от флюенса 

нейтронов и последующей термообработки. Показано, что при облучении ан-

тимонида индия как полным спектром, так и преимущественно быстрыми ней-

тронами реактора, с ростом флюенса период решетки и концентрация носите-

лей заряда возрастают, а подвижность падает в результате образования РД. Вы-

явлены две стадии отжига РД: I – 100÷250 оС; II – 250÷400 оС. Оптимальная 

температура отжига облученного нейтронами реактора антимонида индия рав-

на 450 оС. 
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4. Показано, что при облучении фосфида индия как полным спектром, так 

и преимущественно быстрыми нейтронами реактора, с ростом флюенса кон-

центрация и подвижность носителей заряда уменьшаются. Выявлены три ста-

дии отжига РД: I – 100÷300 оС; II – 300÷600 оС; III – 700÷900 оС. Оптимальной 

температурой отжига облученного нейтронами реактора InР, является темпера-

тура порядка 850÷900 оС. 

5. Впервые обнаружено аномальное поведение периода решетки InP с 

увеличением флюенса нейтронов. В отличие от других полупроводниковых со-

единений AIIIBV, в которых с ростом флюенса нейтронов происходит увеличе-

ние периода решетки, в кристаллах InP при облучении нейтронами период ре-

шетки уменьшается. Высказано предположение, что образуется такое сочетание 

дефектов, в котором преобладает действие дефектов вакансионного типа, 

уменьшающих период решетки, а также антиструктурных дефектов PIn. 

6. Экспериментально показано, что с ростом флюенса быстрых нейтронов 

(ФБ) при n0 ≤ (2÷3)·1018 см-3 (а также в материале р-типа) концентрация элек-

тронов проводимости в InAs увеличивается, а при исходной концентрации n0> 

(3÷4)·1018 см-3  – уменьшается. Предельный уровень концентрации электронов, 

достигаемый при флюенсах нейтронов ФБ ≥ 1019 см-2, не зависит от исходного 

уровня легирования материала и составляет ~ 3·1018 см-3. Выявлены три стадии 

отжига РД: I – 100÷300 оС; II – 300÷600 оС; III – 600÷900 оС. Оптимальная тем-

пература отжига облученного нейтронами арсенида индия равна 900 оС. 

7. Показано, что вплоть до значений концентрации олова: 2⋅1018 см-3 – для 

InSb, 2⋅1019 см-3 – для InP и 7⋅1019 см-3 – для InAs, практически вся вводимая 

примесь после отжига находится в электрически активном состоянии. Необхо-

димо отметить, что достигаемый уровень легирования InSb оловом существен-

но превосходит максимальную концентрацию Sn ((3÷5)⋅1017 см-3), достигаемую 

при традиционном легировании в процессе выращивания, что свидетельствует 
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о преимуществе метода ядерного легирования. Получены эмпирические фор-

мулы зависимости концентрации носителей заряда в ядерно-легированных In-

содержащих соединениях АIIIВV (InSb, InP, InAs) от флюенса тепловых нейтро-

нов: nЯЛ ≈ 2,1·ФТ. В ядерно-легированном InSb значительная часть введенной 

примеси Sn находится в материале в электрически активном состоянии уже 

сразу после облучения. В ядерно-легированном фосфиде индия эффект полит-

ропии наблюдается при более высоких концентрациях примеси (~3·1018 см-3), 

чем в InP, легированном металлургическим способом в процессе выращивания 

(∼5·1017 см-3). 

8. Впервые для реактора ВВР-ц определен раздельный вклад нейтронов 

различных энергий в процесс ядерного легирования InSb, InP и InAs. Показано, 

что отсечение тепловых нейтронов (облучение в Cd-пеналах) не приводит к 

полному устранению эффекта ядерного легирования, значение концентрации 

носителей заряда в материале после облучения и отжига составляет n(Cd) ≈ 

0,2·ФБ. Вклад (δ) промежуточных нейтронов в общий уровень ядерного легиро-

вания InSb, InP и InAs при облучении полным спектром нейтронов реактора в 

зависимости от соотношения тепловых и быстрых нейтронов в потоке (k); для 

реактора типа ВВР δ ≈ 0,1/k, и для реактора ВВР-ц достигает порядка 5% в пе-

риферийных каналах и 10% в каналах активной зоны. 

9. Полученные в работе экспериментальные результаты могут быть ис-

пользованы как физические основы для разработки технологии ядерного леги-

рования и радиационного модифицирования In-содержащих полупроводнико-

вых соединений АIIIВV на базе действующих исследовательских и промышлен-

ных ядерных реакторов. 
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26. Заявка на патент РФ "Способ легирования квазиподложек и эпитаксиальных 

слоев нитрида галлия германием", № 2006140667 от 17.11.2006 

27. Заявка на патент РФ "Способ получения монокристаллических квазиподло-

жек и эпитаксиальных слоев нитридов III- группы" № 2006140666 от 

17.11.2006 
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